

nVIDIA PWM VID Overview

A pulse width modulated I/O that controls the Voltage Regulator VID set point (output voltage) by modulating the duty cycle of the signal sent

- PWM VID functionality applies to Loop 0 only
- An optional method of control is to digitize an analog voltage (VAUX) and generate an output voltage proportional to this input.

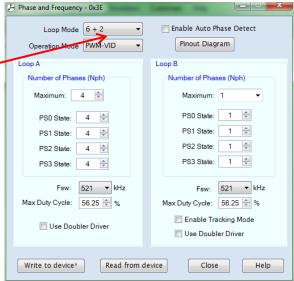
PWM VID implementation allows for

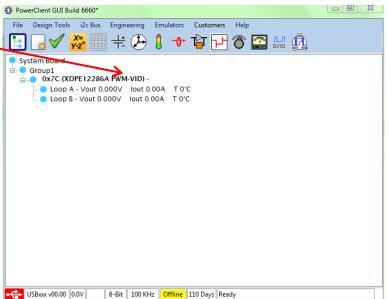
- Wider range of VID set points using a single I/O pin
- VID target change can be communicated in a single cycle
- PSI entry/exit is instantly communicated

nVidia PWM VID connections

In nVidia PWM mode some pins get a new function in parts that do support the PWM-VID function

- > Check that the right pins are shown
- What are the voltage limits for each signal
- > Voltage for VDDIO?

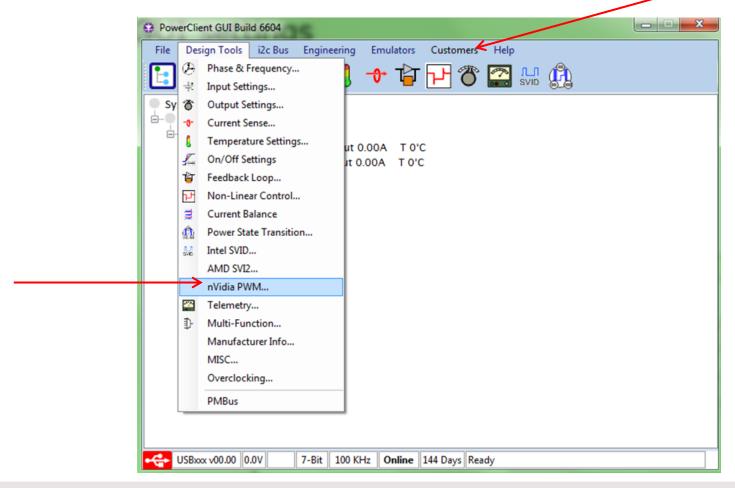



Select nVidia mode

Select the PWM-VID to enter nVidia mode

component name

The selected mode is visible after the



Find nVidia settings in GUI

You may need a password to activate the nVidia settings. Enter it in the Customers tab Ask your Infineon FAE if you do not have a password.

GUI settings

Infineon Proprietary

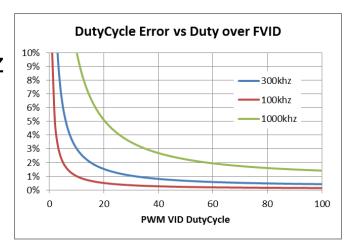
NVidia Digital Solution Requirements

Table 3.1: Register Addresses and Functions

Address (HEX)	Name	Function	Power-On-Reset (HEX)	Access
0x01	PWM-VID	This register configures the settings for PWM-VID dynamic voltage interface	0X00	R/W
0x02	Offset	8 bit 2's compliment register allows offset of the 00h minimum voltage	0X00	R/W
	Vboot	The voltage when GPU boot up or comes back from standby mode or hibernation.	Flashed	

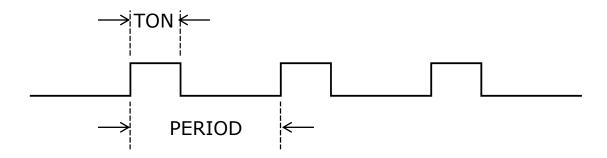
Table 3.2: PWM-VID Register

Bit	7	6	5	4	3	2	1	0
Field							Vboot/VID	Mode
Default	0	0	0	0	0	0	0	0


Available registers	Register Address	Description	00:standby 01: Vboot
pwm_vid_mode	01	bit 0 – enables PWM VID mode to control output voltage bit 1 – regulate at the programmed VBoot value when low	10: standby 11: PWM VID pin
pwm_vid_offset	02	non-zero signed value determines the offset vidcodes	
pwm_vid_pwr_state	05	sets the internal power state of the controller \rightarrow 0 is the higest powerstate	
pwm_vid_setting	06	when pwm_vid_mode[0]=0, the output voltage is determined b value of pwm_vid_setting	y the

Tahoe Digital Solution

- Page 0x70 dedicated for Digital PWM VID communication
- Digital NVPWM connect directly to the SVD pin
- Signal digitized by 100MHz clock (10ns resolution)
 - Typical FVID 300kHz
 - Usable FVID range 100kHz ←→3MHz


Digital offset can be added via I2C

Digital PWMVID Measurement

- The dutycycle is calculated as the quotient of the ON time of the NVPWM over the PERIOD of the signal.
 - ON time is measured from the rising edge to the falling edge of the NVPWM
 - PERIOD is measured from a rising edge to the next rising edge

- The calculation is updated on every rising edge of NVPWM
- A continuous moving average of 4 dutycycles calculations is used to set the target voltage

Digital Solution Equations

- Duty = Ton/Period
- > Vout = vout_vid_vmin + duty·pwm_vid_slope
 - pwm_vid_slope = (Vmax-Vmin)/(5mV(VIDtable)) per 100% duty cycle change

Other notes

- The SVC pin is used for the NVPSI function. Pulling the pin low would set the VR to a low power state
- TSADC for BTSEN pin
 - -Fs=250kHz
 - Q=2.344mV
 - Range 0 ←→ 1.2V

nVidia PWM... Slewrates

- Digital solution
 - the slewrate can be set in the Output Settings window. The fast slew rate setting is used.