

nVidia

Purpose

Describe the settings needed to run in nVidia mode

Target audience:

Design engineers that have some experience with digital power and nVidia needs as the explanations focus on settings in XDPE12xxx and XDPE 14xxx family of controllers.

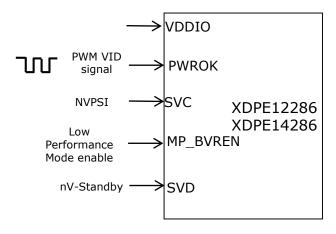
Infineon Proprietary

nVIDIA PWM VID Overview

A pulse width modulated I/O that controls the Voltage Regulator VID set point (output voltage) by modulating the duty cycle of the signal sent

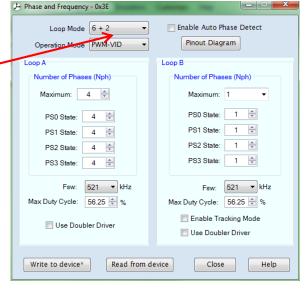
- PWM VID functionality applies to Loop 0 only
- An optional method of control is to digitize an analog voltage (VAUX) and generate an output voltage proportional to this input.

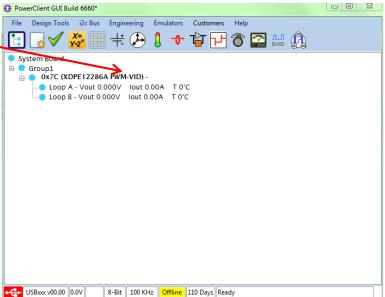
PWM VID implementation allows for


- Wider range of VID set points using a single I/O pin
- VID target change can be communicated in a single cycle
- PSI entry/exit is instantly communicated

Infineon Proprietary

nVidia PWM VID connections

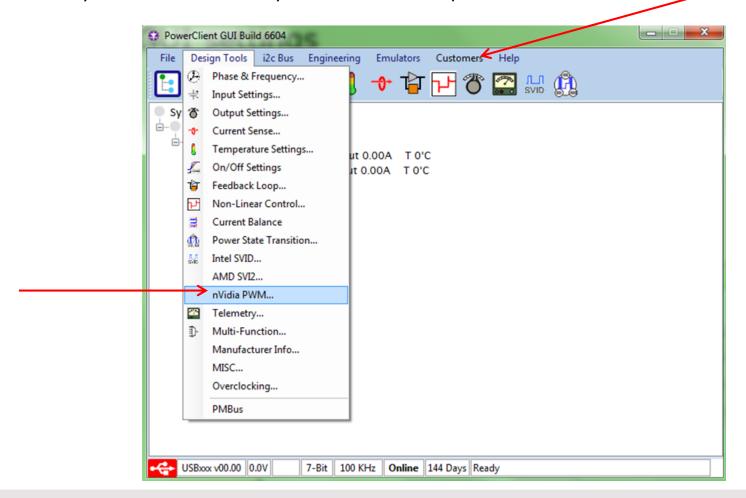

In nVidia PWM mode some pins get a new function in parts that do support the PWM-VID function



Select nVidia mode

Select the PWM-VID to enter nVidia mode

The selected mode is visible after the component name

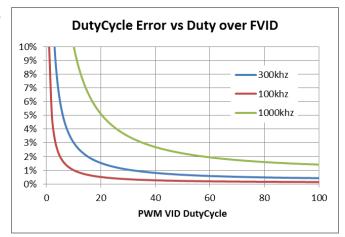


Infineon Proprietary

Find nVidia settings in GUI

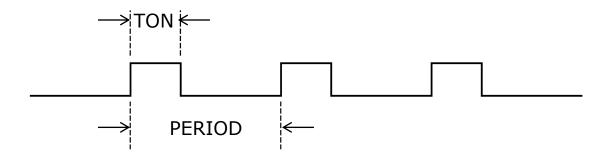
You may need a password to activate the nVidia settings. Enter it in the Customers tab Ask your Infineon FAE if you do not have a password.

GUI settings



Sierra Digital Solution

- Digital NVPWM connect directly to the SVD pin
- Signal digitized by 100MHz clock (10ns resolution)
 - Typical FVID 300kHz
 - Usable FVID range 100kHz ←→3MHz


Digital offset can be added via I2C

Digital PWMVID Measurement

- The dutycycle is calculated as the quotient of the ON time of the NVPWM over the PERIOD of the signal.
 - ON time is measured from the rising edge to the falling edge of the NVPWM
 - PERIOD is measured from a rising edge to the next rising edge

- The calculation is updated on every rising edge of NVPWM
- A continuous moving average of 4 dutycycles calculations is used to set the target voltage

Digital Solution Equations

- Duty = Ton/Period
- Vout = vout_vid_vmin + duty · pwm_vid_slope
 - pwm_vid_slope = (Vmax-Vmin)/(5mV(VIDtable)) per 100% duty cycle change

Other notes

The SVC pin is used for the NVPSI function. Pulling the pin low would set the VR to a low power state

nVidia PWM... Slewrates

- Digital solution
 - the slewrate can be set in the Output Settings window. The fast slew rate setting is used.

Revision History

2.0: Added XDPE142xx information